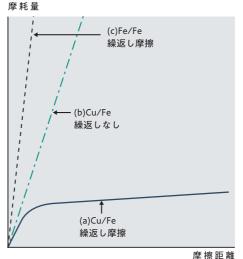

軸受の摩耗について

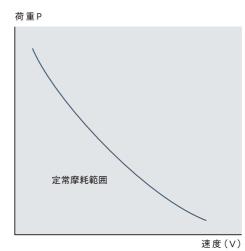
凝着摩耗

相対する2 面間のすべり運動において〈図-1〉に示すように真実接触面で塑性変形が生じると軟らかい軸受側が破断され、移着素子が生成されます。これが繰返されると移着素子が集合堆積して、大きく成長した摩耗粉になります。このような摩耗を凝着摩耗といいます。

摩耗の時間的変化を〈図-2〉に示します。図中(a) は異種材料の組合せですべり面が同じ箇所を繰返してこする繰返し摩擦です。この場合、最初は摩耗量が多く、時間とともに次第に少なくなります。最初の状態を初期摩耗と呼び、摩耗量が少なくなった状態を定常摩耗といいます。これに対し(b) は異種材料の組合せで常に新しい箇所をこする繰返しのない摩擦です。(a) の初期摩耗の状態が常に生じる事になり、時間に比例した著しい摩耗が生じます。(c) は同一材料の組合せで繰返し摩擦を行った場合で(b) よりもさらに急速な摩耗が生じます。この組合せは"ともがね"と呼ばれ、材料が互いに溶け合いやすいことが急速な摩耗の原因とされ、摩擦面として使用するのは好ましくありません。軸と軸受には異種材料の組合せが望ましく、なかでも鋼と銅合金の組合せが最適とされています。

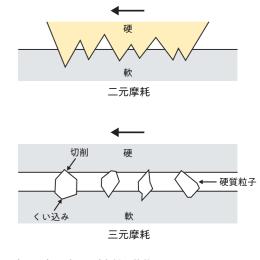
繰返し摩擦における定常摩耗時の速度と荷重の関係を〈図-3〉に示します。直線と荷重の関係は双曲線状になり、その積は一定になります。この積の値が大きい程(図中では線が右上に移動)優れた摺動部材になります。凝着摩耗では、荷重より、すべり速度の影響を大きく受けるため、速度が速い場合は充分な潤滑供給の対策が必要です。


〈図-1〉凝着摩耗における摩耗粉の生成過程※


あり、致命的なトラブルを未然に回避するために選定が重要な部品です。

銅合金は摺動部材として数多くの軸受に使用されています。優れた軸受は相手軸及びそれ自身の摩耗

が少なく機械精度を長く維持させます。一方で、軸受けの摩耗が原因で機械が使用不能になることも


〈図-2〉摩耗の時間的変化※

〈図-3〉定常摩耗における限界曲線

アブレシブ摩耗には〈図-4〉に示すように二元摩耗と三元摩耗があります。 二元摩耗は面の一方の硬い凸凹部が軟らかい面にくい込んで削っていく 形態をとります。三元摩耗は、二面の間に入り込んだ硬い固形粒子が軟ら かいほうの面にくい込み、硬い相手の面を削っていく形態です。

アブレシブ摩耗の摩耗量は凝着摩耗よりも大きく、対策が必要です。二元 摩耗に対してはすべり面の表面粗さを低減することが有効で、特に軸に は研磨を施すことが望ましいです。三元摩耗に対しては外部からの硬質 粒子が混入しないようにすべり面をシール等で密封することが有効です。 混入が避けられない場合は、フィルターにより除去する必要があります。

〈図-4〉アブレシブ摩耗の状態※

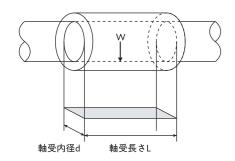
軸受の基本的設計条件

面圧P・すべり速度V・PV値

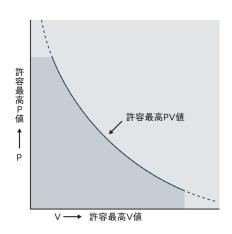
すべり面に作用する最大荷重を軸受投影面積〈図-5〉で除した値 です: W/ (d × L)

力の種類(静的、動的、衝撃)とその方向及び応力分布、支圧状態、 クリアランス等を考慮する必要があります。

すべり速度とは


運動する相手面と軸受の相対速度です: V (m/s) 運動には回転、揺動、直線往復運動等の種類があります。

PV 値とは


P 値とV 値の積で示します: PV 値 (N/mm²・m/s)

許容最高PV値は〈図-6〉に示すようにP値とV値が相互に関連し ています。

材料ごとに許容最高P値、V値、PV値が潤滑条件等に応じて決め られています。材料の選定には摩擦摩耗試験で得られたPV値の 上限を参考にする事ができます。

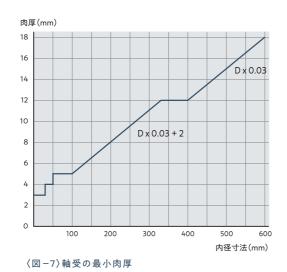
〈図-5〉投影面

〈図-6〉許容最高PV値

面圧P、すべり速度V、PV値の計算式

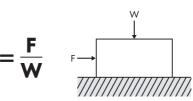
		面圧P(N/mm²)	すべり速度V (m/s)	PV値 (N/mm²+ m/s)
	回転		<u>π dn</u> 10³	<u>Wπ n</u> 10³L
ブッシュ	揺動	W dL	<u>dc θ</u> 10³	<u>Wc θ</u> 10³L
	直線 往復動		2cS 10 ³	2WcS 10³dL
ワッシャー	回転	4W	<u>π Dn</u> 10³	4WDn 10 ³ (D ² -d ²)
7774-	揺動	π (D ² -d ²)	<u>Dc θ</u> 10 ³	$\frac{4WDc\theta}{10^3\pi(D^2-d^2)}$
プレート	往復動	W BL	2cS 10 ³	2WcS 10³BL

- 垂直荷重 (N) 回転数 (s-1) 往復または揺動のサイクル速度
- 揺動角度 (rad)
- D: 軸受外径 (mm) B: プレートの幅 (mm)
- 往復動のストローク (m)
- 軸受内径 (mm) 軸受またはプレートの長さ (mm)


軸受の寸法

内径d

軸受の内径は軸径によって決められます。軸受荷重過大により軸 受面積を大きくする場合は、動力損失と摩擦抵抗を小さくするた めに内径よりも軸受長さを増加する方が望ましいです。


一般にはL/d は0.5 ~ 1.5 の範囲が望ましく、3.5 以上になると軸 の撓みにより軸受端に応力集中が牛じる可能性があります。また 高速高荷重で発熱が大きい場合は1.0以下が推奨されます。

肉厚についての制約は少なく、機械加工及び組立時に変形しな い程度の厚みがあれば十分です。〈図-7〉に軸受の最小肉厚を示し ます。

摩擦係数

摩擦係数 μ は 〈図-8〉 に示すように接触面に垂直な荷重を W とし て、すべらせるのに必要な力をFとすると次式で示されます。

〈図-8〉摩擦係数

○潤滑形態による概略的な摩擦係数の値

	摩擦係数 μ	
固体潤滑	境界潤滑	流体潤滑
0.08~0.3	0.01~0.1	0.002~0.01

軸受の単位時間、単位面積あたりの摩擦発生熱量 Q は次式で示 されます。

$Q = \mu \cdot P \cdot V$

μ:摩擦係数

P:軸受面圧 N/mm²

V: すべり速度 m/s

摩擦係数が小さいほど摩擦発生熱量が小さく、運動条件が良くな り軸受寿命が長くなります。

軸受の寿命

軸受の寿命を推定するには、経験値や実機試験で求める方法と 比摩耗量と呼ばれる数値を用いる方法とがあります。

$k = H/P \cdot V \cdot T$

k:比摩耗量 mm/(N/mm² m/s·h)

H:摩耗寸法 mm P:軸受面圧 N/mm² V: すべり速度 m/s

T:摩擦時間 h

比摩耗量は運動の種類(連続、断続、揺動等)、潤滑条件、材料、 表面粗さ、雰囲気など、数多くの要因で大きく変動します。同一条 件下での摩擦摩耗試験結果を比較の目安として用います。

○潤滑形態による概略的な比摩耗量の値

	比摩耗量k	
固体潤滑	境界潤滑	流体潤滑
10 ⁻¹ ~10 ⁻³	10 ⁻³ ~10 ⁻⁶	10-6~10-8

全材質特性総一覧表

判定基準	引張強さ (N/mm²)	伸び (%)	硬さ (HB)	高温強さ (最高使用温度、K(℃))	導電率 (%IACS@20℃)	耐酸
◎ 優	295 以上	20 以上	110 以上	573(300)以上	50 以上	
○良	245 以上	15 以上	80 以上	473(200)以上	30 以上	10%
△ਗ਼	195 以上	10 以上	50 以上	373(100)以上	20 以上	硫酸水溶液中
×劣	195 未満	10 未満	50 未満	373(100)未満	20 未満	

			I	717576 5	25.00	\	NO 844 A	A No. 1 to		耐食性	耐	食性	A1 = 14 A4	=1#-	24 14 1d	あ	う付	Arm No. Let	** ** *** ***	55 B M B
		記号	旧 JIS 記号	引張強さ	伸び	硬さ	高温強さ	被削性	導電率	耐海水	耐酸	耐アルカリ	→ 軸受性能	耐荷重	溶接性	軟ろう付	硬ろう付	鍛造性	熱処理性	質量効果
	カ	KMS6	-	0	\triangle	0	0	0	×	0	Δ	0	0	0	\triangle	0	0	0	0	0
	イバラ	KMS7	_	0	\triangle	0	0	0	×	0	\triangle	0	0	0	\triangle	0	0	0	0	0
	オリジェ	KMS9	_	0	×	0	0	0	×	0	\triangle	0	0	0	\triangle	0	0	0	0	0
高力型	ル	KMS11	-	0	×	0	0	0	×	0	\triangle	0	0	0	\triangle	0	0	0	0	0
力黄銅系	C	CAC301	HBsC1	0	0	0	0	0	\triangle	0	\triangle	0	\triangle		\triangle	0	0	0	\triangle	0
	c	AC302	HBsC2	0	0	0	0	0	×	0	\triangle	0	\triangle	0	\triangle	0	0	0	\triangle	0
	C	AC303	HBsC3	0	0	0	0	\triangle	×	\triangle	\triangle	0	\triangle		\triangle	0	0	0	\triangle	0
	C	AC304	HBsC4	0	\triangle	0	0	Δ	×	Δ	Δ	0	Δ	0	\triangle	0	0	0	\triangle	0
	オリジナルカイバラ	SKB7	-	0	\circ	0	0	\triangle	×	0	0	0	\triangle	0	0	×	0	0	\triangle	0
アル	ンナルバラ	SKB8	-	0	\triangle	0	0	\triangle	×	0	0	0	0	0	0	×	0	0	\triangle	0
ミニウ	C	CAC701	AlBC1	0	0	0	0	\triangle	×	0	0	0	×	0	0	×	\triangle	\circ	\triangle	0
ッ ム 青	C	CAC702	AlBC2	0	0	0	0	\triangle	×	0	0	0	×	0	0	×	0	0	0	0
銅 系	C	CAC703	AlBC3	0	\circ	0	0	\triangle	×	0	0	0	0		0	×	0	\circ	\triangle	0
	c	CAC704	AlBC4	0	0	0	0	\triangle	×	0	0	0	×	0	0	×	0	0	\triangle	0
	C	CAC401	BC1	×	\circ	\triangle	\triangle	0	×	\triangle	\triangle	\triangle	0		\triangle	0	0	×	×	\triangle
+	c	AC402	BC2	0	0	\triangle	0	0	×	0	Δ	Δ	0	0	\triangle	0	0	×	×	\triangle
銅系	C	AC403	BC3	0	\circ	\triangle	0	0	×	0	\triangle	\triangle	0		\triangle	0	0	×	×	\triangle
	C	AC406	BC6	\triangle	0	\triangle	Δ	0	×	0	Δ	\triangle	0	0	\triangle	0	0	×	×	\triangle
	C	AC407	BC7	\triangle	\circ	\triangle	0	0	×	0	\triangle	\triangle	0		\triangle	0	0	×	×	\triangle
	C	AC502A	PBC2	Δ	×	\triangle	0	\triangle	×	0	Δ	0	0	0	0	0	0	×	×	\triangle
リン書	C	AC502B	PBC2B	0	×	0	0	\triangle	×	0	\triangle	0	0	\circ	0	0	0	×	×	\triangle
銅系	C	AC503A	-	\triangle	×	0	0	\triangle	×	0	\triangle	0	0	0	0	0	0	×	×	\triangle
	C	AC503B	РВСЗВ	0	×	0	0	Δ	×	0	\triangle	0	0	\circ	0	0	0	×	×	\triangle
	C	AC602	LBC2	\triangle	Δ	Δ	Δ	0	×	0	\triangle	Δ	0	0	×	0	\triangle	×	×	\triangle
鉛青	C	AC603	LBC3	×	×	\triangle	\triangle	0	×	\circ	\triangle	\triangle	0	\bigcirc	×	0	\triangle	×	×	\triangle
銅系	C	AC604	LBC4	×	×	Δ	Δ	0	×	0	Δ	Δ	0	0	×	0	\triangle	×	×	\triangle
	C	AC605	LBC5	×	×	×	\triangle	0	×	0	0	\triangle	0	\circ	×	0	\triangle	×	×	\triangle

カイバラオリジナル材のご紹介 JIS 銅合金のうち摺動部材としては耐焼付性に優れた青銅、 鉛青銅、リン青銅が多く使用されていますが、これらは全て強度面で劣ります。 強度面で優れているアルミニウム青銅、高力黄銅は耐焼付性が劣るため、

近年の高圧、高速、連続の過酷な条件に対応することは困難です。 カイバラオリジナル材は、これらの問題を解決するために開発されました。

金属間化合物Mn₅Si₃を晶出させた高力黄銅は、高強度で且つ二硫化モリブデンや

黒鉛と同等の低摩擦係数を示し耐焼付性、耐摩耗性に大変優れています。

金属間化合物Fe3Siを晶出させたアルミニウム青銅は化合物が球状晶を呈し

マトリックスの強度を落とさずに耐凝着摩耗を改善します。

■高力黄銅系

KMS7 / KMS6

金属間化合物 Mn_5Si_3 の析出により、耐摩耗性に加えて耐焼付性を有しています。

KMS9

KMS7と同様に、耐摩耗性および耐焼付性を有しています。また、硬さが大きく耐エロージョン性にも優れています。

KMS11

Pb を含有しており、さらに優れた耐焼付性を 発揮します。

	記号	主成分	合金の特色	用途例
	KMS6	Cu-Zn-Al-Mn-Si	・Mn₅Si₃ 化合物析出型 ・耐摩耗性がよい ・調質材での使用が多い→靭性大、疲労強度大	シュー、油圧機器部品など
高力業	KMS7	Cu-Zn-Al-Mn-Si	•MnsSia 化合物析出型 ・耐摩耗性がよい •As Cast での使用が多い	ウォームホイル、ライナー、 球面ブッシュ、クレードル軸受、 シリンダーブロック、ブッシュなど
黄銅系	KMS9	Cu-Zn-Al-Mn-Si-Ni	・MnsSi3 化合物析出型 ・耐焼付性、耐摩耗性がよい ・硬さ大、耐エロージョン性がよい	バルブプレート、クレードル軸受など
	KMS11	Cu-Zn-Mn-Si-Ni-Pb	・MnsSi3 化合物析出型 ・耐摩耗性がよい ・調質材での使用が多い	バルブプレート、ブッシュ、 シリンダーブロックなど
アルミニウム青銅系	SKB7	Cu-Al-Fe-Si	・Fe ₃ Si 化合物析出型 ・耐摩耗性がよい ・調質材での使用が多い	ウォームホイルなど
ラム青銅系	SKB8	Cu-Al-Fe-Si	・Fe₃Si 化合物析出型 ・耐摩耗性がよい	シュー、バルブプレート、 ウォームホイルなど

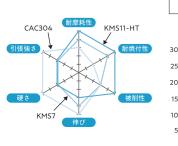
記号		化学成分 (wt%) [*]											
記写	Cu	Zn	Mn	Si	Al	Ni	Pb	Fe	その他	特殊添加物			
KMS6	58.0-65.0	残	2.0-3.5	0.5-1.5	0.5-2.0	_	_	_	_	_			
KMS7	57.0-64.0	残	2.0-3.5	0.5-1.5	0.5-2.0	_	_	_	_	_			
KMS9	54.0-58.0	残	2.0-3.5	0.5-1.5	0.5-2.0	1.5-2.5	_	_	_	_			
KMS11	56.0-59.0	残	2.0-3.5	0.5-1.5	_	1.5-2.5	_	_	_	-			
SKB7	残	_	_	2.0-2.8	6.0-7.5	_	_	0.5-1.5	_	_			
SKB8	残	-	-	2.0-4.0	5.0-8.0	-	-	1.0-3.0	-	1.0 以下			

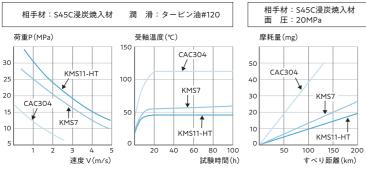
			機械的	性質*		物理的性質				
記号	引張強さ N/mm²	0.2% 耐力 N/mm²	伸び %	ブリネル硬さ HB	10 ⁷ 疲労強度 N/mm ²	融点(液相線) K	比重	熱膨張係数 X10 ⁻⁶ /℃	縦弾性係数 N/mm²	
KMS6 (As Cast)	410 以上	200 以上	10 以上	125 以上 (10/3000)	167以上	_	_	_	_	
KMS6-HT	510 以上	300 以上	12 以上	145 以上 (10/3000)	196 以上	1163	8.1	17.2	104000	
KMS7 (As Cast)	490 以上	245 以上	10 以上	145 以上 (10/3000)	186 以上	1163	8.1	17.2	104000	
KMS9 (As Cast)	540 以上	260 以上	6以上	170以上 (10/3000)	186 以上	_	_	_	_	
KMS9-HT	580 以上	390 以上	4以上	190 以上 (10/3000)	206 以上	1163	8.1	17.7	98000	
KMS11 (As Cast)	410 以上	210 以上	8以上	130以上 (10/3000)	157 以上	_	_	_	_	
KMS11-HT	510 以上	280 以上	10 以上	155 以上 (10/3000)	186 以上	1163	8.2	17.0	103000	
KMS11-FH	510 以上	294 以上	10 以上	155 以上 (10/3000)	225 以上	_	_	_	_	
SKB7	530 以上	245 以上	15 以上	130以上 (10/1000)	220 以上	1273	7.8	18.0	109000	
SKB8	600以上	350 以上	10 以上	160以上 (10/3000)	280 以上	1273	7.8	16.2	113000	

※ 使用条件により、規格数値を若干変更することがあります。

高力黄銅系

Cu-Zn 合金にAl.Fe.Mn などを添加し、 引張強さ、硬さが大きく、耐荷重に優れた合金です。




	記号	旧記号	合金系	合金の特色	用途例		
	10·J		н ш л	MnsSia 化合物析出型 耐摩耗性がよい	717.22.07		
カ	KMS6	_	Cu-Zn-Al-Mn-Si 系	Minsola 化合物析面型 ・剛摩託性がよい 調質材での使用が多い→靭性大、疲労強度大	シュー、油圧機器部品など		
イバラオ	KMS7	-	Cu-Zn-Al-Mn-Si 系	Mn _S Si ₃ 化合物析出型 耐摩耗性がよい As Cast での使用が多い	ウォームホイル・ライナー、球面ブッシュ、 クレードル軸受、シリンダーブロック・ブッシュなど		
オリジナ	KMS9	-	Cu-Zn-Al-Mn-Si-Ni 系	MnsSia 化合物析出型 耐焼付性、耐摩耗性がよい 硬さ大、耐エロージョン性がよい	バルブプレート、クレードル軸受など		
アル	KMS11	-	Cu-Zn-Mn-Si-Ni-Pb 系	MnsSia 化合物析出型 耐摩耗性がよい 調質材での使用が多い	バルブプレート、ブッシュ、シリンダーブロックなど		
	CAC301	HBsC1	Cu-Zn-Mn-Fe-Al 系	耐食性、靭性がよい	プロペラボンネット、軸受、弁座、		
	CAC301C	HBsC1C	Cu-Zn-Mn-re-Al 矛	剛良性、粉性がよい	ベアリングリティナー、シールリングなど		
	CAC302	HBsC2	C. 7- M- F- AL T	The Add Winds Theretals 18 b.	軸受、ベアリングリティナー、スリッパー、弁座、弁棒、		
	CAC302C	HBsC2C	Cu-Zn-Mn-Fe-Al 系	耐食性、靭性、耐摩耗性がよい	エンドプレート、特殊シリンダー、一般機械部品など		
	CAC303	HBsC3	6 7 414 5 5	強度、硬度が高い	低速高荷重の摺動部品、軸受、ウォームホイル、		
	CAC303C	HBsC3C	Cu-Zn-Al-Mn-Fe 系	高荷重の場合にも耐摩耗性がよい	スリッパー、ナット、鍛圧プレス軸受など		
	CAC304	HBsC4	C. 7- Al M- F- 7	この合金の中で一番高強度、高硬度	低速高荷重の摺動部品、橋梁用支承板、		
	CAC304C	HBsC4C	Cu-Zn-Al-Mn-Fe 系	高荷重の場合にも耐摩耗性がよい	軸受、ナット、ウォームホイル、耐摩耗板など		

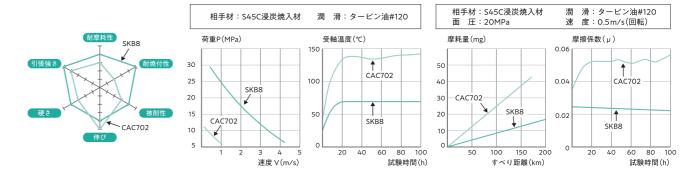
記号	化学成分											
記写	Cu	Zn	Al	Fe	Mn	Ni	Si	Pb				
KMS6	58.0-65.0	残	0.5-2.0	_	2.0-3.5	-	0.5-1.5	_				
KMS7	57.0-64.0	残	0.5-2.0	_	2.0-3.5	_	0.5-1.5	_				
KMS9	54.0-58.0	残	0.5-2.0	_	2.0-3.5	1.5-2.5	0.5-1.5	_				
KMS11	56.0-59.0	残	_	_	2.0-3.5	1.5-2.5	0.5-1.5	0.3-1.5				
CAC301	55.0.40.0	22.0.42.0	0515	0515	0115							
CAC301C	55.0-60.0	33.0-42.0	0.5-1.5	0.5-1.5	0.1-1.5	_	_	_				
CAC302	55.0-60.0	30.0-42.0	0.5-2.0	0.5-2.0	0.1-3.5							
CAC302C	55.0-60.0	30.0-42.0	0.5-2.0	0.5-2.0	0.1-5.5	_	_	_				
CAC303	60.0-65.0	22 0 28 0	2050	2040	3 5 5 0							
CAC303C		22.0-28.0	3.0-5.0	2.0-4.0	2.5-5.0	_	_	_				
CAC304	40.0.45.0	22.0.20.0	5075	20.40	25.50							
CAC304C	60.0-65.0	22.0-28.0	5.0-7.5	2.0-4.0	2.5-5.0	_	_	_				

		標	機械的性質		物理的性質				
記号	引張強さ N/mm²	0.2%耐力 N/mm²	伸び %	ブリネル硬さ HB	融点(液相線)K	比重	熱膨張係数 X10⁻ ⁶ /℃	縦弾性係数 N/mm²	
KMS6-HT	510 以上	300 以上	12 以上	145 以上 (10/3000)	1163	8.1	17.2	104000	
KMS7(As Cast)	490 以上	245 以上	10 以上	145 以上 (10/3000)	1163	8.1	17.2	104000	
KMS9-HT	580 以上	390 以上	4以上	190 以上 (10/3000)	1163	8.1	17.7	98000	
KMS11-HT	510 以上	280 以上	10 以上	155以上 (10/3000)	1163	8.2	17.0	103000	
CAC301	430 以上	140 以上	20 以上	*90 以上 (10/1000)	1153	8.1	20.3	103000	
CAC301C	470 以上	*170 以上	25 以上	*90 以上 (10/1000)	1153	8.3	20.3	103000	
CAC302	490 以上	*175 以上	18 以上	*100以上 (10/1000)	1153	8.2	19.9	96000	
CAC302C	530 以上	*200 以上	20 以上	*100以上 (10/1000)	1153	8.2	19.9	96000	
CAC303	635 以上	*305 以上	15 以上	165 以上 (10/3000)	1213	7.9	22.0	103000	
CAC303C	655 以上	*310 以上	18 以上	*165以上 (10/3000)	1213	7.9	22.0	103000	
CAC304	755 以上	*410 以上	12 以上	200 以上 (10/3000)	1203	7.9	22.0	97000	
CAC304C	765 以上	*420 以上	14 以上	*200以上 (10/3000)	1203	7.9	22.0	97000	

^{*} 参考数值

アルミニウム青銅系

Cu-Al 二元合金にFe.Ni.Mn 等を添加し、引張強さ、 伸び、硬さが大きく、特に高温強さ、耐食性に優れた合金です。



	記号	旧記号	合金系	合金の特色	用途例		
オリジナルカイバラ	SKB7	-	Cu-Al-Fe-Si 系	Fe3Si 化合物析出型、耐摩耗性がよい	ウォームホイルなど		
ンナル	SKB8	-	Cu-Al-Fe-Si 系	Fe3Si 化合物析出型、耐焼付性、 耐摩耗性がよい	シュー、バルブプレート、 ウォームホイルなど		
	CAC701	AIBC1	Cu-Al-Fe 系	靭性が高い	耐酸ポンプ、軸受、歯車、バルブシート、		
	CAC701C	AIBC1C	Cu-At-re #	耐食性、耐熱性、耐摩耗性、低温特性がよい	プランジャなど		
	CAC702	AIBC2	Cu-Al-Fe-Ni-Mn 系	強度が高く、耐食性、耐摩耗性がよい	軸受、歯車、バルブシート、		
	CAC702C	AIBC2C	Cu-At-re-INI-MII #	強反が向く、剛及は、剛序花はがよい	羽根車、ボルト、ナットなど		
	CAC703	AIBC3	Cu-Al-Fe-Ni-Mn 系	強度が特に高く、耐食性が特に優れ、	軸受、羽根車、バルブ、歯車、ポンプ部品、		
	CAC703C	AIBC3C	Cu-Al-re-NI-MN 糸	耐摩耗性がよい	船用ボルト・ナット、化学工業用機器部品など		
	CAC704	AIBC4	Cu-Al-Mn-Fe-Ni 系	強度が特に高く、耐食性、耐摩耗性がよい	スリーブ、歯車、化学用機器部品など		

記号				化学成分			
記写	Cu	Fe	Ni	Al	Mn	Si	特殊添加物
SKB7	残	0.5-1.5	_	6.0-7.5	_	2.0-2.8	_
SKB8	残	1.0-3.0	_	5.0-8.0	_	2.0-4.0	1.0 以下
CAC701	8F 0 00 0	1.0-3.0	0.1-1.0	8.0-10.0	0.1-1.0		
CAC701C	85.0-90.0	1.0-3.0	0.1-1.0	8.0-10.0	0.1-1.0	_	_
CAC702	80.0-88.0	2.5-5.0	1.0-3.0	8.0-10.5	0.1-1.5		
CAC702C	60.0-66.0	2.5-5.0	1.0-3.0	8.0-10.5	0.1-1.5	_	_
CAC703	78.0-85.0	3.0-6.0	3.0-6.0	8.5-10.5	0.1-1.5		_
CAC703C	78.0-85.0	3.0-0.0	3.0-0.0	8.3-10.3	0.1-1.5	_	_
CAC704	71.0-84.0	2.0-5.0	1.0-4.0	6.0-9.0	7.0-15.0	_	_

			4	物理的性質				
記号	引張強さ N/mm²	0.2%耐力 N/mm²	伸び %	ブリネル硬さ HB	融点(液相線)K	比重	熱膨張係数 X10 ⁻⁶ /℃	縦弾性係数 N/mm²
SKB7	530 以上	245 以上	15 以上	130 以上 (10/1000)	1273	7.8	18.0	109000
SKB8	600以上	350 以上	10 以上	160 以上 (10/3000)	1273	7.8	16.2	113000
CAC701	440 以上	*170 以上	25 以上	80以上 (10/1000)	1333	7.6	16.2	105000
CAC701C	490 以上	*170 以上	20 以上	90以上 (10/1000)	1333	7.6	16.2	105000
CAC702	490 以上	*200 以上	20 以上	120 以上 (10/1000)	1343	7.6	16.2	112000
CAC702C	540 以上	*220 以上	15 以上	120 以上 (10/1000)	1343	7.6	16.2	112000
CAC703	590 以上	*245 以上	15 以上	150 以上 (10/3000)	1353	7.6	16.2	114000
CAC703C	610 以上	*245 以上	12 以上	160 以上 (10/3000)	1353	7.6	16.2	114000
CAC704	590 以上	*270 以上	15 以上	160 以上 (10/3000)	1263	7.5	18.6	128000

^{*} 参考数值

潤 滑:タービン油#120 速 度:0.5 m/s(回転)

CAC304

KMS7

40 60 80 100 試験時間(h)

摩擦係数(μ)

青銅系

Cu-Sn-Zn 合金にPb を含むものと含まないものがあり、 耐荷重・耐食性・軸受性能、および被削性が良好な合金です。

記号	旧記号	合金系	合金の特色	用途例		
CAC401	BC1	Cu-Zn-Pb-Sn 系	湯流れ、被削性がよく、	軸受、一般機械部品など		
CAC401C	BC1C	Cu-ZII-PU-3II 示	かつロウ付け性及びハンダ付け性がよい	半田 文、		
CAC402	BC2	Cu-Sn-Zn 系	耐圧性、耐摩耗性、耐食性がよく、	軸受、スリーブ、ポンプ胴体、羽根車、		
CAC402C	BC2C	Cu-511-211 ж	かつ機械的性質もよい	バルブ、歯車、電動機器部品など		
CAC403	BC3	Cu-Sn-Zn 系	耐圧性、耐摩耗性、機械的性質がよく、	軸受、スリーブ、ポンプ本体、羽根車、		
CAC403C	BC3C	Cu-511-211 /k	かつ耐食性がCAC402 よりもよい	バルブ、歯車、一般機械部品など		
CAC406	BC6	Cu-Sn-Zn-Pb 系	耐圧性、耐摩耗性、被削性、鋳造性がよい	バルブ、ボンプ本体、羽根車、軸受、 スリーブ、給水栓、一般機械部品など		
CAC406C	BC6C	Cu-311-211-FU 示	inj ルロ、inj 手代は、ix inj は、対にはかるい			
CAC407	BC7	Cu-Sn-Zn-Pb 系	機械的性質がCAC406 よりよい	軸受、小形機械部品、バルブ、 一般機械部品など		
CAC407C	BC7C	Cu-3II-ZII-PD 未	(成/成中) 注負が CAC400 よりよい			

記号		化学成分						
記写	Cu	Sn	Pb	Zn				
CAC401	79.0-83.0	2.0-4.0	3.0-7.0	8.0-12.0				
CAC401C	79.0-65.0	2.0-4.0	5.0-7.0	8.0-12.0				
CAC402	86.0-90.0	7.0-9.0		3.0-5.0				
CAC402C	80.0-90.0	7.0-7.0	_	3.0 3.0				
CAC403	86.5-89.5	9.0-11.0		1.0-3.0				
CAC403C	80.5-87.5	7.0-11.0	_	1.0-3.0				
CAC406	83.0-87.0	4.0-6.0	4.0-6.0	4.0-6.0				
CAC406C	03.0-07.0	4.0-0.0	4.0-0.0	4.0-6.0				
CAC407	86.0-90.0	5.0-7.0	1.0-3.0	3.0-5.0				
CAC407C	00.0-90.0	5.0-7.0	1.0-3.0					

		機械的	勺性質			物理的	的性質	
記号	引張強さ N/mm²	0.2%耐力 N/mm²	伸び %	ブリネル硬さ HB	融点(液相線)K	比重	熱膨張係数 X10 ⁻⁶ /℃	縦弾性係数 N/mm²
CAC401	165 以上	*90 以上	15 以上	*55 以上	1223	8.7	18.0	90000
CAC401C	195 以上	*90 以上	15 以上	*65 以上	1223	8.7	18.0	90000
CAC402	245 以上	*125 以上	20 以上	*70 以上	1273	8.7	18.0	96000
CAC402C	275 以上	*150 以上	15 以上	*85 以上	1273	8.7	18.0	96000
CAC403	245 以上	*125 以上	15 以上	*75 以上	1253	8.7	20.0	103000
CAC403C	275 以上	*170 以上	13 以上	*85 以上	1253	8.7	20.0	103000
CAC406	195 以上	*100 以上	15 以上	*60 以上	1283	8.8	18.0	93000
CAC406C	245 以上	*100 以上	15 以上	*75 以上	1283	8.8	18.0	93000
CAC407	215 以上	*125 以上	18 以上	*65 以上	1303	8.7	19.0	96000
CAC407C	255 以上	*130 以上	15 以上	*80 以上	1303	8.7	19.0	96000

^{*} 参考数值

リン青銅系

Cu-Sn 合金にP を添加し、特に引張強さ・硬さ・ 軸受性能を向上させた合金です。

記号	旧記号	合金系	合金の特色	用途例	
CAC502A	PBC2				
CAC502B	PBC2B	Cu-Sn-P 系	耐食性、耐摩耗性がよい	歯車、ウォームホイル、軸受、スリーブ、 羽根車、耐摩耗板、一般機械部品など	
CAC502C	PBC2C				
CAC503A	-				
CAC503B	PBC3B	Cu-Sn-P 系	硬さが高く、耐摩耗性がよい	摺動部品、油圧シリンダー、スリーブ、 歯車、耐摩耗板など	
CAC503C	PBC3C				
PBC+Ni1.5*	-	Cu Ca D Ni 4	IIC II、実相で下口機械が発布が育い	ウェ /ナ/川 林平かど	
PBC+Ni3.0*	-	Cu-Sn-P-Ni 系	JIS リン青銅系より機械的強度が高い	ウォームホイル、軸受など	
PBC+Pb1.0*	_	Cu-Sn-P-Pb 系	JIS リン青銅系より被削性が良い	耐摩耗板、軸受など	

^{*} 非JIS材

記号			化学成分		
16 75	Cu	Sn		Ni	Pb
CAC502A			0.05-0.20		
CAC502B	87.0-91.0	9.0-12.0	0.15-0.50	_	
CAC502C			0.05-0.50		
CAC503A			0.05-0.20		
CAC503B	84.0-88.0	12.0-15.0	0.15-0.50	_	_
CAC503C			0.05-0.50		
PBC+Ni1.5	残	9.0-12.0	0.05-0.50	1.5-2.0	_
PBC+Ni3.0	残	9.0-12.0	0.05-0.50	3.0-3.5	_
PBC+Pb1.0	残	9.0-12.0	0.05-0.50	_	0.5-1.5

		機	械的性質			物理的	 物理的性質 比重 熟膨張係数 ※弾性係数 N/mm² 8.8 18.4 97000 8.8 18.4 97000 8.8 18.4 97000 8.7 19.0 110000 	
記号	引張強さ N/mm²	0.2%耐力 N/mm²	伸 び %	ブリネル硬さ HB	融点(液相線) K	比重		
CAC502A	195 以上	*120 以上	5 以上	60以上 (10/1000)	1273	8.8	18.4	97000
CAC502B	295 以上	*145 以上	5 以上	80以上 (10/1000)	1273	8.8	18.4	97000
CAC502C	295 以上	*160 以上	10 以上	80以上 (10/1000)	1273	8.8	18.4	97000
CAC503A	195 以上	*135 以上	1以上	80以上 (10/1000)	1253	8.7	19.0	110000
CAC503B	265 以上	*145 以上	3 以上	90以上 (10/1000)	1253	8.7	19.0	110000
CAC503C	295 以上	*160 以上	5 以上	90以上 (10/1000)	1253	8.7	19.0	110000
PBC+Ni1.5	275 以上	130 以上	8以上	80以上 (10/1000)	1293	8.8	18.0	103000
PBC+Ni3.0	345 以上	140 以上	10 以上	90以上 (10/1000)	1303	8.8	18.0	103000
PBC+Pb1.0	195 以上	120 以上	5 以上	60以上 (10/1000)	1273	8.8	18.4	97000

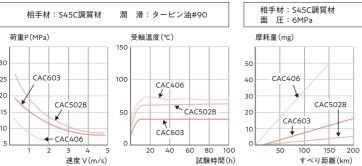
^{*} 参考数值

1

鉛青銅系

Cu-Sn 合金にPb を4~22%添加し、特に軸受性能を向上させた合金です。

記号	旧記号	合金系	合金の特色	用途例	
CAC602	LBC2	Cu-Sn-Pb 系	耐圧性、耐摩耗性がよい	中高速・高荷重用軸受、シリンダ、バルブ、 鍛圧プレス軸受など	
CAC603	LBC3	Cu-Sn-Pb 系	面圧の高い軸受に適し、なじみ性がよい	中高速・高荷重用軸受、鍛圧プレス軸受、	
CAC603C	LBC3C	Cu-Sii-FD Ж	国圧の同く和文に題び、なりかにかない	粉砕機用軸受など	
CAC604	LBC4	Cu-Sn-Pb 系	3種よりなじみ性がよい	中高速・中荷重用軸受、車両用軸受、 ホワイトメタルの裏金など	
CAC604C	LBC4C	Cu-Sii-i b /k	3 生のりなりが圧があり		
CAC605	LBC5	Cu-Sn-Pb 系	鉛青銅鋳物の中でなじみ性、耐焼付性が特によい	中高速・低荷重用軸受、エンジン用軸受など	
CAC605C	LBC5C	Cu-Sii-i b Ak	対して は は	下向处・ 医川 圭 川 和 文、 エノ ジ ノ 川 和 文 な C	
LBC+Ni2.0*	_	Cu-Sn-Pb-Ni 系	硬さ大、耐焼付性、耐摩耗性がよい	中高速・高荷重用軸受、建機用軸受など	


^{*} 非JIS材

合金	化学成分							
H 311	Cu	Sn	РЬ	Ni				
CAC602	82.0-86.0	9.0-11.0	4.0-6.0	_				
CAC603	77.0-81.0	9.0-11.0	9.0-11.0					
CAC603C	//.0-61.0	9.0-11.0	9.0-11.0	_				
CAC604	74.0-78.0	7.0-9.0	14.0-16.0					
CAC604C	74.0-78.0	7.0-9.0	14.0-16.0	_				
CAC605	70.0.76.0	(0.00	160 220					
CAC605C	70.0-76.0	0.0-8.0	6.0-8.0 16.0-22.0					
LBC+Ni2.0	残	12.0-13.5	8.0-10.0	2.25 以下				

		機	械的性質			物理的	的性質	
合金	引張強さ N/mm²	0.2% 耐力 N/mm²	伸び %	ブリネル硬さ HB	融点(液相線)K	比重	熱膨張係数 X10-6/℃	縦弾性係数 N/mm²
CAC602	195 以上	*100 以上	10 以上	65 以上 (10/500)	1203	8.9	18.2	79000
CAC603	175 以上	*80 以上	7以上	60 以上 (10/500)	1203	9.0	18.5	76000
CAC603C	225 以上	*135 以上	10 以上	65 以上 (10/500)	1203	9.0	18.5	76000
CAC604	165 以上	*80 以上	5 以上	55 以上 (10/500)	1213	9.3	18.4	73000
CAC604C	220 以上	*100 以上	8以上	60 以上 (10/500)	1213	9.3	18.4	73000
CAC605	145 以上	*60 以上	5 以上	45 以上 (10/500)	1213	9.4	18.4	73000
CAC605C	175 以上	*80 以上	7 以上	50 以上 (10/500)	1213	9.4	18.4	73000
LBC+Ni2.0	210 以上	*130 以上	2以上	80 以上 (10/500)	1203	8.9	18.5	76000

^{*} 参考数值

JISと関連外国規格

• 日本産業規格(JIS) • アメリカ(ASTM) • ヨーロッパ(EN)等、様々な規格の材質の製造を行います。

	日本産業規格		73	関連外国規格 		ヨーロッパ
	JIS		ASTM	·, //	SAE	EN
規格番号	H5120:2016	B584:2014	B271:2018	B148:2018	J462:2018	EN1982:2017
規格名称	銅及び銅合金鋳物	一般用銅合金砂型鋳物	銅合金遠心鋳造鋳物	アルミニウム 青銅砂型鋳物	銅合金鋳物	銅及び銅合金・地金 及び鋳物
	CAC101	_	_	_	_	_
銅	CAC102	_	-	_	-	Cu-C (CC040A grade C)
	CAC103	_	_	_	_	Cu-C (CC040A grade A, B)
	CAC201	_	_	_	_	CuZn15As-C (CC760S)
黄銅	CAC202	C85400	C85400	_	C85400	CuZn33Pb2-C (CC750S)
	CAC203	C85700	C85700	-	-	CuZn39Pb1Al-C (CC754S)
	CAC301	C86500	C86500	-	C86500	CuZn35Mn2Al1Fe1-C (CC765S)
高力黄銅	CAC302	C86400	C86400	-	-	CuZn34Mn3Al2Fe1-C (CC764S)
	CAC303	C86200	C86200	-	C86200	CuZn25Al5Mn4Fe3-C (CC762S)
	CAC304	C86300	C86300	_	C86300	
	CAC401	C84400	C84400	-	-	CuSn3Zn8Pb5-C (CC490K)
	CAC402	C90300	C90300	_	C90300	_
青銅	CAC403	C90500	C90500	_	C90500	-
	CAC406	C83600	C83600	_	C83600	CuSn5Zn5Pb5-C (CC491K)
	CAC407	C92200	C92200	_	C92200	_
	CAC502A		_	_		CuSn10-C (CC480K)
リン青銅	CAC502B	C90700 C90800	_	-	C90700	(33,33,7)
	CAC503A	C90800	-	-		CuSn12-C
	CAC503B		_	_		(CC483K)
	CAC602	_	-	-	-	-
鉛青銅	CAC603	C93700	C93700	-	C93700	CuSn10Pb10-C (CC495K)
	CAC604	C93800	C93800	-	C93800	CuSn7Pb15-C (CC496K)
	CAC605	_	_	_	_	CuSn5Pb20-C (CC497K)
	CAC701	=	C95200	C95200	C95200	CuAl10Fe2-C (CC331G)
アルミニウム 青銅	CAC702	_	C95400 C95410	C95400 C95410	C95400	CuAl10Ni3Fe2-C (CC332G)
日如	CAC703	_	C95800	C95800	C95800	CuAl10Fe5Ni5-C (CC333G)
	CAC704	_	_	C95700	_	_

潤 滑:タービン油#90 速 度:2 m/s(回転)

60 80 100 試験時間(h)

摩擦係数(μ)

